DOI: 10.1002/ejoc.200500653

Synthesis of Dendritic Branches with Peripheral Fullerene Subunits

Uwe Hahn, [a] Kohei Hosomizu, [b] Hiroshi Imahori, *[b] and Jean-François Nierengarten*[a]

Keywords: Dendrimer / Fullerene / Esterification

Highly soluble dendritic branches with two, four, eight or 16 methanofullerene subunits at their peripheries and carboxylic acid functions at their focal points have been prepared by a convergent approach. Starting from a methanofullerene derivative possessing a tert-butyl ester function, the successive dendrimer generations were obtained by repetition of a reaction sequence involving cleavage of the tert-butyl ester moiety under acidic conditions, followed by a DCC-mediated

esterification reaction with an A2B building block possessing two benzylic alcohol functions and a tert-butyl ester group. This repetitive synthetic sequence is very efficient and allowed the dendritic growth up to the fifth-generation derivative, containing 16 peripheral fullerene subunits.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

Among the large number of functional groups used in dendrimer chemistry,[1] fullerene has proven to be particularly interesting.^[2] Whereas dendrimers with fullerene cores have been widely studied, [3] the synthesis of fullerene-rich dendrimers has been considered to a lesser degree, mainly because of the difficulties encountered in their synthesis. The two major problems for the preparation of such dendrimers are the low solubilities of C₆₀ derivatives and their chemical reactivity, limiting the range of reactions that can be used for the synthesis of branched structures bearing multiple C₆₀ units. Over the past few years we have developed synthetic methodologies allowing the preparation of dendrons substituted with a few fullerene moieties.^[4] These fullerodendrons are interesting building blocks for the preparation of monodisperse fullerene-rich macromolecules with intriguing properties^[5] and fullerene-containing amphiphilic derivatives capable of forming stable Langmuir films at air/water interfaces. [6] However, the synthesis of high-generation dendritic branches from currently known building blocks remains difficult, either for solubility reasons or because of steric hindrance problems. This prompted us to explore the development of new fullerodendrons further, and in this paper we now report an efficient synthetic route to soluble dendritic branches with peripheral fullerene units and carboxylic acid functions at their focal points. The repetitive synthetic sequence used for their preparation is very efficient and allowed dendritic growth

Results and Discussions

Synthesis

The preparation of the first- and second-generation fullerene derivatives is depicted in Scheme 1. The starting ful-

TFA,
$$CH_2Cl_2$$

G1 CO_2tBu ($R = tBu$, $Z = C_8H_{17}$)

G1 CO_2H ($R = H$, $Z = C_8H_{17}$)

DCC, DMAP
HOBt, CH_2Cl_2

ZO

OOR

TFA, CH_2Cl_2

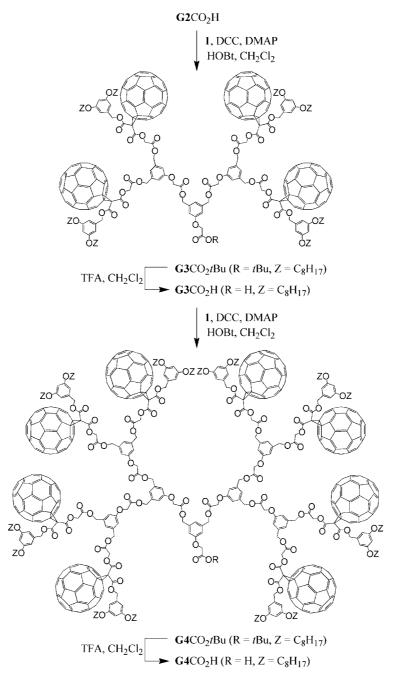
G2 CO_2tBu ($R = tBu$, $Z = C_8H_{17}$)

G2 CO_2tH ($R = H$, $Z = C_8H_{17}$)

Scheme 1. Synthesis of G1CO₂H and G2CO₂H.

up to the fifth-generation derivative, containing 16 peripheral fullerene subunits.

[[]a] Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France E-mail: jfnierengarten@lcc-toulouse.fr


[[]b] Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan E-mail: imahori@scl.kyoto-u.ac.jp Supporting information for this article is available on the

WWW under http://www.eurjoc.org or from the author.

lerene derivative $G1CO_2tBu$ was prepared by a previously described procedure. This compound is actually easily obtained on a multi-gram scale, is highly soluble in common organic solvents, thanks to the presence of the two long alkyl chains, and therefore appears to be a good candidate for the preparation of new fullerene-containing dendrimers. The iterative reaction sequence used for the preparation of the successive dendrimer generations is based on successive cleavage of a *tert*-butyl ester moiety under acidic conditions, followed by a DCC-mediated (DCC = N,N'-dicyclohexylcarbodiimide) esterification reaction with

the A_2B building block 1. This compound possessing two benzylic alcohol functions and a protected carboxylic acid function was obtained in six steps as already reported.^[7]

Selective cleavage of the *tert*-butyl ester group in **G1**CO₂tBu was achieved by treatment with an excess of CF₃COOH (TFA)^[8] in CH₂Cl₂ to afford **G1**CO₂H in a quantitative yield. Treatment of diol **1** with carboxylic acid **G1**CO₂H under esterification conditions in the presence of DCC, 4-(dimethylamino)pyridine (DMAP) and 1-hydroxybenzotriazole (HOBt) in CH₂Cl₂ gave the protected secondgeneration dendron **G2**CO₂tBu in 90% yield. Hydrolysis of

Scheme 2. Synthesis of G3CO₂H and G4CO₂H.

the *tert*-butyl ester moiety under acidic conditions then afforded the corresponding carboxylic acid **G2**CO₂H in quantitative yield.

Esterification of G2CO₂H with diol 1 (DCC, HOBt, DMAP) afforded the *tert*-butyl-protected fullerodendron G3CO₂tBu in 87% yield (Scheme 2). Selective hydrolysis of the *tert*-butyl ester under acidic conditions afforded acid G3CO₂H in 99% yield. Subsequent treatment of G3CO₂H with the branching unit 1 in the presence of DCC, HOBt and DMAP afforded fullerodendron G4CO₂tBu (95%), which after treatment with CF₃CO₂H gave G4CO₂H (97%).

By repetition of the same reaction sequence from $G4CO_2H$, the fifth-generation derivatives $G5CO_2tBu$ and $G5CO_2H$ were also prepared (Scheme 3). It is important to highlight here that the time needed for complete consumption of all the reactants during the esterification step increased as the generation number increased, but *N*-acyldicy-

clohexylurea by-products resulting from the rearrangement of the activated acid intermediates^[9] were quite limited even for the highest-generation compound, thus allowing the preparation of the fifth-generation protected dendron **G5**CO₂tBu in a good yield (76%) under DCC-mediated esterification conditions. The synthetic methodology described here is therefore efficient for the preparation of fullerene-rich derivatives and does not suffer from the reduced accessibility of the reactive group located at the focal point of the dendritic structure as previously observed for dendrimers synthesized under similar esterification conditions.^[10]

Characterization

Compounds G1–G5CO₂tBu and G1–G5CO₂H are readily soluble in common organic solvents such as CH₂Cl₂,

Scheme 3. Synthesis of G5CO₂H.

87

CHCl₃ or THF, and complete spectroscopic characterization was easily achieved. In addition to the signals arising from the 3,5-dioctyloxybenzyl units, the ¹H NMR spectrum of G1CO₂H is characterized by two singlets at $\delta = 5.01$ and 5.45 ppm corresponding to the protons of the two methylene groups (H_a and H_b, see Figure 1 for the numbering). For G2CO₂tBu, the ¹H NMR spectrum reveals the signals of the two equivalent G1CO₂ units as well as those corresponding to the central tert-butyl [3,5-bis(methylene)phenoxylacetate core. In particular, a triplet and four singlets are seen for the different OCH₂ groups. Similarly, on going from the second to the third generation, the signals corresponding to the additional tert-butyl [3,5-bis(methylene)phenoxylacetate unit are clearly observable. As shown in Figure 1, the ¹H NMR spectrum of G3CO₂tBu reveals six singlets and a triplet for the seven different OCH2 units. It can be seen that the resonance of the methylenic protons H_d is shifted slightly downfield when the corresponding acetate unit is connected to a benzylic moiety (δ = 4.65 ppm in G3CO₂tBu) rather to a tert-butyl group ($\delta = 4.51$ ppm in G2CO₂tBu). For G4CO₂tBu, the eight expected singlets corresponding to the methylene groups H_{a-h} are still clearly distinguishable in the 4.5-5.5 ppm region. In contrast, for the highest-generation tert-butyl ester, the ¹H NMR is slightly broadened and the signals arising from some of the methylenic groups overlap. It is important to emphasize, however, that the integration ratio of the five sets of signals is in perfect agreement with that expected for G5CO2tBu.

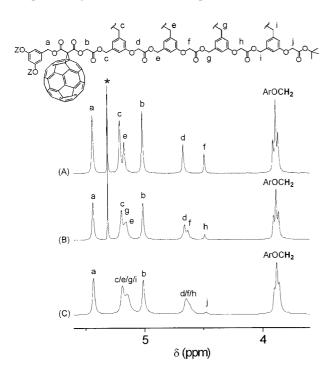


Figure 1. ¹H NMR spectra (CDCl₃, 300 MHz) of: A) G3CO₂tBu, B) G4CO₂tBu, and C) G5CO₂tBu (* = CH₂Cl₂ impurity).

Fullerodendrons G1-G5CO2tBu and G1-G5CO2H were also characterized by ¹³C NMR spectroscopy. As typical examples, the ¹³C NMR spectra of compounds G2CO₂tBu

www.eurjoc.org

and G5CO₂tBu recorded in CDCl₃ are shown in Figure 2 and Figure 3. The spectrum of G2CO₂tBu is in full accordance with the proposed molecular structure. As would be expected, four resonances are observed for the carbonyl C atoms ($\delta = 163.1, 163.2, 166.4, \text{ and } 167.6 \text{ ppm}$), five for the OCH₂ groups (δ = 62.7, 65.8, 66.9, 68.3, and 69.3 ppm) and two for the *tert*-butyl unit (δ = 26.3 and 82.7 ppm). Only 26 signals out of the 39 expected (31 for the fullerene sp² carbon atoms and eight for the aromatic rings) are observed in the typical aromatic and fullerene region. Indeed, the C_{60} unit of C_S -symmetrical methanofullerene derivatives substituted with different ester moieties generally possess a pseudo- $C_{2\nu}$ symmetry. Actually, the resonances of the fullerene C atoms are usually observed in the ¹³C NMR spectrum with a pattern almost identical to those of $C_{2\nu}$ -symmetrical methanofullerene derivatives in which the two ester moieties are equivalent. Finally, the signals observed at δ = 51.4 and 71.3 ppm correspond to the methano bridge car-

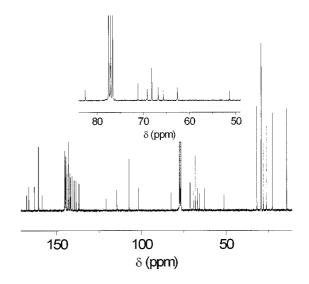


Figure 2. ¹³C NMR spectrum (CDCl₃, 75 MHz) of **G2**CO₂tBu.

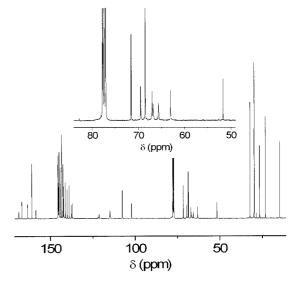


Figure 3. ¹³C NMR spectrum (CDCl₃, 75 MHz) of G5CO₂tBu.

bons and to the fullerene sp³ carbons, respectively. The ¹³C NMR spectrum of fullerodendron $G5CO_2tBu$ shows the same characteristic features as $G2CO_2tBu$ with additional signals arising from the additional [3,5-bis(methylene)phenoxy]acetate units. Importantly, the spectrum clearly shows that all the 16 peripheral fullerene subunits are equivalent, as attested by a single resonance for the methano bridge carbons at $\delta = 51.4$ ppm and a single signal for the fullerene sp³ C atom at $\delta = 71.4$ ppm. It can also be seen that the characteristic resonances of the *tert*-butyl group at the focal point are still observable ($\delta = 26.3$ and 82.6 ppm) in spite of the large size of the dendritic structure.

Conclusions

Highly soluble dendritic branches with peripheral C₆₀ subunits and carboxylic acid functions at their focal points have been prepared by a convergent approach. Starting from a methanofullerene derivative possessing a *tert*-butyl ester function, the synthesis is based on successive cleavage of a *tert*-butyl ester moiety under acidic conditions followed by a DCC-mediated esterification reaction with an A₂B building block. The successive dendrimer generations have thus been obtained in good yields and the efficient iterative reaction sequence allowed us to prepare the fifth-generation dendron, bearing 16 fullerene peripheral moieties.

Experimental Section

General: Reagents and solvents were purchased as reagent grade and were used without further purification. Compounds $G1CO_2H^{[5a]}$ and $I^{[8]}$ were prepared according to the literature. All reactions were performed in standard glassware. Evaporation and concentration were performed at water-aspirator pressure and drying in vacuo at 10^{-2} Torr. Column chromatography: silica gel 60 (230–400 mesh, 0.040–0.063 mm) from E. Merck. TLC: glass sheets coated with silica gel 60 F_{254} from E. Merck; visualization by UV light. UV/Vis spectra [λ_{max} in nm (ε)]: Hitachi U-3000 spectrophotometer. IR spectra (cm⁻¹): ATI Mattson Genesis Series FTIR instrument. NMR spectra: Bruker AM 300 (300 MHz); solvent peaks as reference; δ in ppm, J in Hz. Elemental analysis were performed by the analytical service at the Institut Charles Sadron (Strasbourg, France).

General Procedure for the Preparation of GnCO₂tBu: DCC (2.1 equiv.) was added to a stirred solution of 1 (1 equiv.), the appropriate fullerenecarboxylic acid derivative (2.1 equiv.), DMAP (0.5 equiv.) and a catalytic amount of HOBt in CH₂Cl₂ at 0 °C. After 1 h, the mixture was allowed to warm slowly to room temp. and was then stirred at room temp. for 1 d (G2CO₂tBu), 3 d (G3CO₂tBu), 4 d (G4CO₂tBu), or 5 d (G5CO₂tBu). The produced solid was filtered off and the solvent was evaporated. The crude product was then purified as outlined below.

G2CO₂tBu: This compound was prepared from **1** and **G1CO₂H.** Column chromatography on silica gel (CH₂Cl₂) and gel permeation chromatography (Biorad, Biobeads SX-1, CH₂Cl₂) yielded **G2CO**₂tBu (1.59 g, 90%) as a dark red, glassy product. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (t, J = 7 Hz, 12 H), 1.22–1.43 (m, 40 H), 1.49 (s, 9 H), 1.72 (m, 8 H), 3.87 (t, J = 7 Hz, 8 H), 4.51 (s, 2 H), 5.00 (s, 4 H), 5.21 (s, 4 H), 5.30 (s, 2 H), 5.43 (s, 4 H), 6.38 (t,

J=2 Hz, 2 H), 6.58 (d, J=2 Hz, 4 H), 6.85 (d, J=2 Hz, 2 H), 7.00 (s, 1 H) ppm. 13 C NMR (CDCl₃, 75 MHz): $\delta=14.3$, 22.8, 26.3, 28.2, 29.4, 29.6, 32.0, 51.4, 62.7, 65.8, 66.9, 68.3, 69.3, 71.3, 82.7, 101.8, 107.4, 114.6, 120.9, 136.7, 137.2, 138.7, 139.8, 140.97, 141.03, 141.9, 142.0, 142.31, 142.34, 143.0, 143.1, 143.9, 144.0, 144.60, 144.62, 144.75, 144.77, 144.79, 144.81, 145.0, 145.1, 145.2, 145.28, 145.29, 145.31, 145.35, 145.4, 158.5, 160.6, 163.1, 163.2, 166.4, 167.6 ppm. IR (CH₂Cl₂): $\tilde{v}=1747$ (C=O) cm⁻¹. UV/Vis [CH₂Cl₂, nm (L mol⁻¹ cm⁻¹)]: $\lambda_{\rm max}$ (ε) = 258 (284200), 326 (86880), 426 (6980), 686 (440). C₁₉₀H₁₀₀O₁₉ (2686.8): C 84.93, H 3.75; found C 84.61, H 3.76.

G3CO₂tBu: This compound was prepared from 1 and G2CO₂H. Column chromatography on silica gel (CH₂Cl₂) and gel permeation chromatography (Biorad, Biobeads SX-1, CH2Cl2) yielded G3CO₂tBu (2.82 g, 87%) as a dark red, glassy product. ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, J = 7 Hz, 24 H), 1.20–1.44 (m, 80 H), 1.48 (s, 9 H), 1.72 (m, 16 H), 3.87 (t, J = 7 Hz, 16 H), 4.47 (s, 2 H), 4.65 (s, 4 H), 5.00 (s, 8 H), 5.15 (s, 4 H), 5.19 (s, 8 H), 5.43 (s, 8 H), 6.38 (t, J = 2 Hz, 4 H), 6.57 (d, J = 2 Hz, 8 H), 6.83 (d, J = 2 Hz, 2 H, 6.85 (s, 4 H), 6.90 (s, 1 H), 7.01 (s, 2 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 14.3, 22.8, 26.3, 28.2, 29.4, 29.6, 32.0, 51.4, 62.7, 65.4, 65.7, 66.6, 66.8, 68.3, 69.2, 71.3, 82.7, 101.8, 107.4, 114.6, 114.8, 121.1, 121.4, 136.7, 137.28, 137.32, 138.6, 139.8, 140.91, 140.94, 141.8, 142.0, 142.3, 143.0, 143.1, 143.90, 143.92, 144.53, 144.57, 144.68, 144.73, 144.75, 144.97 145.05, 145.16, 145.23, 145.25, 145.30, 145.32, 158.3, 158.4, 160.6, 163.0, 163.1, 166.4, 167.6, 168.2 ppm. IR (CH₂Cl₂): $\tilde{v} = 1748$ (C=O) cm⁻¹. UV/ Vis $[CH_2Cl_2, nm (Lmol^{-1}cm^{-1})]$: $\lambda_{max} (\varepsilon) = 258 (568250), 326$ (179980), 426 (17080), 686 (900). C₃₈₆H₂₀₀O₄₁ (5493.7): C 84.39, H 3.67; found C 84.06, H 3.67.

G4CO₂tBu: This compound was prepared from 1 and G3CO₂H. Column chromatography on silica gel (CH₂Cl₂) and gel permeation chromatography (Biorad, Biobeads SX-1, CH2Cl2) yielded G4CO₂tBu (1.60 g, 95%) as a dark red, glassy product. ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, J = 7 Hz, 48 H), 1.18–1.44 (m, 160 H), 1.47 (s, 9 H), 1.71 (m, 32 H), 3.87 (t, J = 7 Hz, 32 H), 4.45 (s, 2 H), 4.62 (s, 4 H), 4.65 (s, 8 H), 5.00 (s, 16 H), 5.15 (m, 28 H), 5.43 (s, 16 H), 6.38 (t, J = 2 Hz, 8 H), 6.57 (d, J = 2 Hz, 16 H), 6.83 (br. s, 14 H), 6.90 (br. s, 3 H), 7.00 (s, 4 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 14.3, 22.8, 26.3, 28.2, 29.4, 29.6, 32.0, 51.4, 62.7, 65.4, 65.7, 66.5 (br.), 66.8, 68.2, 69.2, 71.3, 82.6, 101.8, 107.4, 114.6, 114.7 (br.), 121.1, 136.7, 137.3, 137.5, 138.6, 139.8, 140.89, 140.92, 141.8, 142.0, 142.2, 143.0, 143.1, 143.9, 144.53, 144.55, 144.65, 144.70, 144.73, 144.9, 145.0, 145.16, 145.19, 145.22, 145.3, 158.2, 158.3, 158.4, 160.6, 163.0, 163.1, 166.4, 167.5, 168.2 (br.) ppm. IR (CH₂Cl₂): $\tilde{v} = 1747$ (C=O) cm⁻¹. UV/Vis [CH₂Cl₂, nm (Lmol⁻¹ cm⁻¹)]: λ_{max} (ε) = 258 (1145520), 326 (377910), 426 (40350), 686 (1960). C₇₇₈H₄₀₀O₈₅ (11107.45): C 84.13, H 3.63; found C 83.90, H 3.60.

G5CO₂*t***Bu**: This compound was prepared from **1** and **G4CO**₂H. Column chromatography on silica gel (CH₂Cl₂) and gel permeation chromatography (Biorad, Biobeads SX-1, CH₂Cl₂) yielded **G5**CO₂*t*Bu (307 mg, 76%) as a dark red, glassy product. ¹H NMR (400 MHz, CDCl₃): δ = 0.87 (t, J = 7 Hz, 96 H), 1.18–1.44 (m, 320 H), 1.47 (s, 9 H), 1.71 (m, 64 H), 3.87 (t, J = 7 Hz, 64 H), 4.45 (s, 2 H), 4.62 (m, 28 H), 5.00 (s, 32 H), 5.15 (m, 56 H), 5.43 (s, 32 H), 6.38 (br. s, 16 H), 6.55 (br. s, 32 H), 6.83 (br. s, 32 H), 6.90 (br. m, 9 H), 7.00 (s, 8 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 14.3, 22.8, 26.3, 28.2, 29.4, 29.6, 32.0, 51.4, 62.7, 65.5, 65.8, 66.6, 66.9, 68.4, 69.3, 71.4, 82.6, 101.8, 107.4, 114.6, 114.8 (br.), 121.1, 121.6 (br.), 136.7, 137.3, 137.5, 138.6, 139.8, 140.9, 141.8, 142.0, 142.3, 143.0, 143.1, 143.9, 144.6, 144.67, 144.69, 144.74, 144.9, 145.05,

145.18, 145.23, 145.3, 158.2, 158.3, 160.6, 163.0, 163.1, 166.4, 168.2 (br.) ppm. IR (CH₂Cl₂): $\tilde{v}=1747$ (C=O) cm⁻¹. UV/Vis [CH₂Cl₂, nm (Lmol⁻¹cm⁻¹)]: λ_{max} (ϵ) = 259 (2166900), 326 (712970), 426 (86010), 686 (4110). C₁₅₆₂H₈₀₀O₁₇₃ (22335.0): C 84.00, H 3.61; found C 84.63, H 3.59.

General Procedure for the Preparation of $GnCO_2H$: The appropriate ester was dissolved in CH_2Cl_2 and TFA (100 equiv.) was added. The resulting solution was stirred at room temperature overnight, then extensively washed with water and dried (MgSO₄), and the solvents were evaporated.

G2CO₂H: This compound was prepared from **G2CO**₂*t*Bu. **G2CO**₂H (1.87 g, 96%) was obtained as a dark red, glassy product. ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, J = 7 Hz, 12 H), 1.19–1.45 (m, 40 H), 1.72 (m, 8 H), 3.87 (t, J = 7 Hz, 8 H), 4.69 (s, 2 H), 5.01 (s, 4 H), 5.21 (s, 4 H), 5.29 (s, 2 H), 5.43 (s, 4 H), 6.38 (s, 2 H), 6.58 (s, 4 H), 6.85 (s, 2 H), 7.00 (s, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 14.3, 22.8, 26.3, 29.4, 29.6, 32.0, 51.4, 62.8, 64.9, 66.7, 68.3, 69.3, 71.2, 101.8, 107.5, 114.4, 121.1, 136.7, 137.4, 138.6, 139.8, 140.9, 141.0, 141.9, 142.0, 142.28, 142.30, 143.0, 143.1, 143.93, 143.96, 144.5, 144.6, 144.72, 144.76, 144.78, 145.0, 145.07, 145.16, 145.26, 145.29, 145.34, 145.4, 158.1, 160.6, 163.1, 163.2, 166.5, 171.9 ppm. IR (CH₂Cl₂): \tilde{v} = 1747 (C=O) cm⁻¹. UV/Vis [CH₂Cl₂, nm (Lmol⁻¹ cm⁻¹)]: λ max (ε) = 259 (282680), 326 (88390), 426 (7250), 686 (425).

G3CO₂H: This compound was prepared from **G3CO₂/Bu. G3CO₂H** (1.73 g, 99%) was obtained as a dark red glassy product. ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, J = 7 Hz, 24 H), 1.20–1.44 (m, 80 H), 1.72 (m, 16 H), 3.87 (t, J = 7 Hz, 16 H), 4.58 (s, 2 H), 4.65 (s, 4 H), 5.00 (s, 8 H), 5.15 (s, 4 H), 5.19 (s, 8 H), 5.43 (s, 8 H), 6.38 (t, J = 2 Hz, 4 H), 6.57 (d, J = 2 Hz, 8 H), 6.83 (s, 2 H), 6.85 (s, 4 H), 6.88 (s, 1 H), 7.00 (s, 2 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 14.3, 22.8, 26.3, 29.4, 29.6, 32.0, 51.4, 62.8, 64.9, 65.4, 66.4, 66.8, 68.3, 69.3, 71.3, 101.8, 107.4, 114.5, 121.0, 121.6, 136.7, 137.3, 137.5, 138.6, 139.8, 140.9, 141.0, 141.8, 142.0, 1452.26, 142.27, 143.0, 143.90, 143.92, 144.53, 144.58, 144.68, 144.73, 144.76, 144.97, 145.05, 145.16, 145.23, 145.26, 145.32, 145.33, 158.1, 158.3, 160.6, 163.0, 163.1, 166.5, 168.3, 170.4 ppm. IR (CH₂Cl₂): \tilde{v} = 1748 (C=O) cm⁻¹. UV/Vis [CH₂Cl₂, nm (Lmol⁻¹ cm⁻¹)]: λ max (ε) = 258 (571320), 326 (183110), 426 (17360), 686 (930).

G4CO₂H: This compound was prepared from **G4CO**₂*t*Bu. **G4CO**₂H (502 mg, 97%) was obtained as a dark red glassy product. ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, J = 7 Hz, 48 H), 1.18–1.44 (m, 160 H), 1.71 (m, 32 H), 3.87 (t, J = 7 Hz, 32 H), 4.62 (m, 14 H), 5.00 (br. s, 16 H), 5.13 (br. s, 16 H), 5.43 (s, 16 H), 6.38 (br. s, 8 H), 6.57 (d, J = 2 Hz, 16 H), 6.80 (m, 14 H), 6.90 (br. s, 3 H), 7.00 (s, 4 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 14.3, 22.8, 26.3, 29.4, 29.6, 32.0, 51.4, 62.7, 65.4, 66.3, 66.4, 66.7, 68.2, 69.2, 71.2, 101.8, 107.4, 114.6, 114.7 (br.), 121.0, 136.7, 137.3, 137.4, 138.6, 139.8, 140.89, 140.91, 141.8, 142.0, 142.2, 143.0, 143.1, 143.9, 144.52, 144.55, 144.65, 144.70, 144.73, 145.00, 145.04, 145.16, 145.22, 145.3, 158.2, 160.6, 163.08, 166.3, 166.4, 168.2, 168.4 (br.) ppm. IR (CH₂Cl₂): \tilde{v} = 1747 (C=O) cm⁻¹. UV/Vis [CH₂Cl₂, nm (L mol⁻¹ cm⁻¹)]: λ max (ε) = 259 (1205680), 326 (382620), 426 (41280), 686 (1980).

G5CO₂H: This compound was prepared from **G5**CO₂*t*Bu. **G5**CO₂*t*Bu. **G5**CO₂H (270 mg, 88%) was obtained as a dark red, glassy product. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (t, J = 7 Hz, 96 H), 1.18–1.44 (m, 320 H), 1.71 (m, 64 H), 3.87 (t, J = 7 Hz, 64 H), 4.45 (s, 2 H), 4.62 (m, 28 H), 5.00 (s, 32 H), 5.15 (m, 56 H), 5.43 (s, 32 H), 6.38 (br. s, 16 H), 6.55 (br. s, 32 H), 6.83 (br. s, 32 H), 6.90 (br. m, 9 H), 7.00 (s, 8 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.3$,

22.8, 26.3, 29.4, 29.6, 32.0, 51.4, 62.7, 65.5, 65.8, 66.6, 66.9, 68.4, 69.3, 71.4, 101.8, 107.4, 114.6, 114.8 (br.), 121.1, 121.6 (br.), 136.7, 137.3, 137.5, 138.6, 139.8, 140.9, 141.8, 142.0, 142.3, 143.0, 143.1, 143.9, 144.6, 144.67, 144.69, 144.74, 144.9, 145.05, 145.18, 145.23, 145.3, 158.2, 158.3, 160.6, 163.0, 163.1, 166.4, 169.1 (br.) ppm. IR (CH₂Cl₂): $\tilde{v} = 1750$ (C=O) cm⁻¹. UV/Vis [CH₂Cl₂, nm (Lmol⁻¹cm⁻¹)]: λ_{max} (ε) = 259 (2168530), 326 (713120), 426 (86320), 686 (4160).

Supporting Information Available (see footnote on the first page of this article): ¹H NMR spectra of G1–G5CO₂/Bu and G1–G5CO₂H.

Acknowledgments

This work was supported by the CNRS. The German Academic Exchange Service is gratefully acknowledged for a post-doctoral fellowship to U. H. This work was also supported by a Grant-in-Aid (No. 11740352 to H. I.) from MEXT, Japan. H. I. is also grateful for a Grant-in-Aid from MEXT, Japan (21st Century COE on Kyoto University Alliance for Chemistry) for financial support. We further thank M. Schmitt for high-field NMR measurements.

- a) G. R. Newkome, C. N. Moorefield, F. Vögtle, *Dendrimers and Dendrons: Concepts, Syntheses, Applications*, VCH, Weinheim, 2001;
 b) *Dendrimers and other Dendritic Polymers*, (Eds.: J. M. J. Fréchet, D. A. Tomalia), Wiley, Chichester, 2001.
- [2] a) A. Hirsch, O. Vostrowsky, *Top. Curr. Chem.* 2001, 217, 51–93;
 b) J.-F. Nierengarten, *Top. Curr. Chem.* 2003, 228, 87–110;
 c) J.-F. Nierengarten, *New J. Chem.* 2004, 28, 1177–1191.
- [3] For selected examples, see: a) K. L. Wooley, C. J. Hawker, J. M. J. Fréchet, F. Wudl, G. Srdanov, S. Shi, C. Li, M. Kao, J. Am. Chem. Soc. 1993, 115, 9836-9837; b) J.-F. Nierengarten, T. Habicher, R. Kessinger, F. Cardullo, F. Diederich, V. Gramlich, J.-P. Gisselbrecht, C. Boudon, M. Gross, Helv. Chim. Acta 1997, 80, 2238–2276; c) M. Brettreich, A. Hirsch, Tetrahedron Lett. 1998, 39, 2731-2734; d) F. Cardullo, F. Diederich, L. Echegoyen, T. Habicher, N. Jayaraman, R. M. Leblanc, J. F. Stoddart, S. Wang, Langmuir 1998, 14, 1955-1959; e) J. L. Segura, R. Gómez, N. Martín, C. P. Luo, A. Swartz, D. M. Guldi, Chem. Commun. 2001, 707-708; f) F. Langa, M. J. Gómez-Escalonilla, E. Díez-Barra, J. C. García-Martínez, A. de la Hoz, J. Rodríguez-López, A. González-Cortés, V. López-Arza, Tetrahedron Lett. 2001, 42, 3435-3438; g) T. Chuard, R. Deschenaux, J. Mater. Chem. 2002, 12, 1944-1951; h) Y. Murata, M. Ito, K. Komatsu, J. Mater. Chem. 2002, 12, 2009-2020; i) Y. Rio, G. Accorsi, H. Nierengarten, C. Bourgogne, J.-M. Strub, A. Van Dorsselaer, N. Armaroli, J.-F. Nierengarten, Tetrahedron 2003, 59, 3833-3844.
- [4] a) J.-F. Nierengarten, D. Felder, J.-F. Nicoud, *Tetrahedron Lett.* 1999, 40, 269–272; b) J.-F. Nierengarten, D. Felder, J.-F. Nicoud, *Tetrahedron Lett.* 2000, 41, 41–44; c) D. Felder, H. Nierengarten, J.-P. Gisselbrecht, C. Boudon, E. Leize, J.-F. Nicoud, M. Gross, A. Van Dorsselaer, J.-F. Nierengarten, *New J. Chem.* 2000, 24, 687–695.
- [5] a) N. Armaroli, C. Boudon, D. Felder, J.-P. Gisselbrecht, M. Gross, G. Marconi, J.-F. Nicoud, J.-F. Nierengarten, V. Vicinelli, *Angew. Chem. Int. Ed.* 1999, 38, 3730–3733; b) M. Gutiérrez-Nava, G. Accorsi, P. Masson, N. Armaroli, J.-F. Nierengarten, *Chem. Eur. J.* 2004, 10, 5076–5086.
- [6] a) D. Felder, J.-L. Gallani, D. Guillon, B. Heinrich, J.-F. Nicoud, J.-F. Nierengarten, *Angew. Chem. Int. Ed.* 2000, 39, 201–204; b) J.-F. Nierengarten, *Chem. Eur. J.* 2000, 6, 3667–3670; c) J.-F. Nierengarten, J.-F. Eckert, Y. Rio, M. P. Carreon, J.-L. Gallani, D. Guillon, *J. Am. Chem. Soc.* 2001, 123, 9743–9748.

- [7] D. Felder, M. Gutiérrez Nava, M. del Pilar Carreon, J.-F. Eckert, M. Luccisano, C. Schall, P. Masson, J.-L. Gallani, B. Heinrich, D. Guillon, J.-F. Nierengarten, *Helv. Chim. Acta* 2002, 85, 288–319
- [8] P. J. Kocienski, Protective Groups, Thieme, Stuttgart, 1994.
- [9] F. Kurzer, K. Douraghi-Zadeh, *Chem. Rev.* 1967, 67, 107–152.
 [10] S. Zhang, Y. Rio, F. Cardinali, C. Bourgogne, J.-L. Gallani, J.-F. Nierengarten, *J. Org. Chem.* 2003, 68, 9787–9797.

Received: August 28, 2005 Published Online: November 15, 2005